

1

Are All Pigs Equal?
- or are some more equal than others?

by Stuart Reid

"ALL ANIMALS ARE EQUAL BUT SOME ANIMALS ARE MORE EQUAL THAN OTHERS."
George Orwell, Animal Farm, 1945.

Imagine you are offered the opportunity to

take up one of two jobs that are similar in

all respects, except one is working on a

traditional project and the other is working

on an agile project. Which one would you

take?

One thing is practically certain - most

developers would jump at the opportunity

to work in an agile environment. But

would (or should) a tester?

“How agile is this project?”
As a tester one of the first questions you

would need to ask is “how agile is this

project?” This begs a further question:

“Are there levels of project agility?” An

agile purist would point to the agile

manifesto (see right) and the associated

principles and argue that a true agile

project would be aligned with all of these.

The reality is that there are very few truly

agile projects out there; in practice the

label of ‘agile’ seems to be accepted as

long as the project develops software

incrementally with the delivery of each

increment typically taking no longer than 4

weeks. Alignment with the other

principles varies dramatically. So the

question of ‘how agile?’ is legitimate, but

how does level of project agility affect

testers? To answer that question you need

to understand that a fundamental difference

between working on an agile and a

traditional project is that an agile team is

empowered to make decisions and

everyone is jointly responsible for the

output of the team.

Agile team bonding
Everyone on an agile team works together

towards a single goal and the best agile

teams are those where the management

have been able to provide an environment

that nurtures the feelings of empowerment,

togetherness, joint responsibility and trust

within the team. In my experience of

talking to team members on successful

agile project teams, it is these

characteristics that they generally find

most attractive. Ensuring this healthy team

environment is rarely cited as the main

objective of organizations adopting an

agile approach, but it is often seen as a key

attribute associated with successful agile

projects.

Testing outside the agile team
An integral part of building a cohesive

agile team is the shared responsibility for

the team’s output. The delivery of useful,

operational software on a regular and

frequent basis is a goal of a pure agile

project. If the team’s output is going to be

a fully-tested, usable piece of functioning

software (as declared in the ‘Principles

behind the Agile Manifesto’ – see

http://agilemanifesto.org/principles.html)

then testing must be an integral part of the

team that produces it – but many

supposedly agile projects do not deliver

usable software at the end of each cycle.

Instead, they deliver software that still

needs to be tested in a realistic

environment, has not been tested against

non-functional requirements such as

performance, and also still needs to be user

acceptance tested.

Thus on many ‘agile’ projects we find that

the necessary specialist testing is not

performed within the agile development

team, but instead done as a separate

activity some time after the agile

development team delivers their output.

So the main reason a tester needs to ask the

question “how agile is this project?” is to

determine whether they are going to be

embraced into the togetherness of the agile

team. The alternative is they are given an

outsider’s role of checking the agile

development team’s outputs and feeding

incident reports back to them while the

development team are only really

interested in concentrating on creating their

next increment – much the same as with

traditional development approaches. In

this situation the tester would not even be

considered a pig, let alone an equal pig, but

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others do it. Through this

work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin

Mike Beedle Jim Highsmith Steve Mellor

Arie van Bennekum Andrew Hunt Ken Schwaber

Alistair Cockburn Ron Jeffries Jeff Sutherland

Ward Cunningham Jon Kern Dave Thomas

Martin Fowler Brian Marick

© 2001, the above authors this declaration may be freely copied in any form, but only in its entirety through this notice.

2

would more likely be considered a chicken

(see right).

Multi-functional agile teams
Suppose it’s good news and the project is

more agile than most and delivering usable

software at the end of each sprint (the

majority of projects that label themselves

as ‘agile’ do not deliver usable software at

the end of each sprint). In this situation the

testers will necessarily be an integral part

of the agile team and thus pigs. So far, so

good – you’ll presumably get all the

benefits of being fully bonded into a

successful team. You now need to

establish what your expected role will be.

If we return to the purist view we may well

find that there is an expectation that all

agile team members are able to perform

any activity needed in the team – the so-

called ‘multi-functional’ team. So, one day

you may be programming, another day

testing, and a third helping subject matter

experts write user stories. This is one of

the least likely ‘pure agile’ approaches you

may encounter, but worth checking on, in

case this happens to be one of these rare

projects. For many testers this is going to

be a deal-breaker – because “if they could

design and program (and get paid more for

doing so) they probably wouldn’t be

testers, would they?”

Despite the ideal of a multi-functional

team and the corresponding benefits it

creates with planning, scheduling and

reviewing, practically no agile teams

achieve this ‘nirvana’. It is worth noting,

however, that those teams that aspire to

this are often perceived to be good places

to work in as they expect and support team

members in their continued professional

development to become more widely

skilled. Imagine the pleasure of working

in a team where the developers are trying

to understand how they can improve their

testing practices, and where testers are

treated as equals as they have

demonstrated their ability to add value in

design and code reviews using the

development skills they have acquired.

An agile development and test

process?
So, you decide to take on the nominal role

of test analyst within an agile team. What

can you expect to be your responsibilities?

Let’s consider what testing typically gets

done in an agile sprint. Testing needs to be

aligned with development (even in agile)

so one place to start would be considering

what development activities take place. In

fact, it would be useful if we could define a

generic tailorable process for agile projects

and then we could see both the

development and test activities and how

they inter-relate (see figure below).

Those of you who read the agile manifesto

earlier (or already know it) may well be

wondering how I can even consider

defining a process in an article on agile.

“Individuals and interactions over

processes and tools” is right at the start of

the manifesto. It states at the end of the

agile manifesto that the stuff on the right is

considered of lower value, but I find that

everyone knowing what process they are

following is not just useful but absolutely

crucial. For me the major difference with

the process in agile projects is not that it is

of less value, but rather that it is flexible

and not a fixed process that rarely changes

as in traditional projects. In an agile

project the team should be empowered to

evolve and (hopefully) improve their

process, perhaps as often as after each

increment.

Testing roles in agile teams
In the provided model of a generic agile

development and test process, testing is

explicitly shown in a number of stages. Of

Pigs & Chickens

The various stakeholders working on and with agile projects are often referred to as pigs and chickens;

you are either one or the other, and note that neither term is supposed to be offensive. This

classification is based on the joke in the cartoon below. Those stakeholders who spend all their time on

the project are known as pigs (e.g. the sprint team members), while the remaining stakeholders (e.g.

domain experts, who are occasionally approached for advice) are known as chickens. If you hold a daily

scrum meeting then the pigs are expected to have their say, while the chickens are expected to listen.

The role of the product owner or customer representative can be that of either a pig or chicken

dependent on whether they devote all or just some of their time to the project. Similarly, testers can be

either pigs or chickens dependent on whether they are an integral part of the sprint team or used as a

separate testing service after the sprint has finished.

3

course, not all stages will be required in all

sprints and not all the testing shown in this

process would be the responsibility of the

tester. For instance, the testing during the

‘develop stories’ stage would normally be

the responsibility of the developers,

although the tester would be expected to

provide advice in this area, as necessary.

Similarly the acceptance test stage would

ideally be executed by the end users, but

the testers would normally play an

advisory role to these users (e.g. how to

write good acceptance tests) and take

responsibility for setting up this stage of

testing.

Testers would normally take prime

responsibility for the ‘story testing’ (testing

against user stories) and the story-level

regression testing, which will involve

running a regression test suite that is built

up from the story tests of previous sprints.

While much of the non-functional testing

would be performed as part of the story

testing, some may also be performed

during unit test (e.g. memory

management). However, occasionally

specialist test skills or environmental

constraints may mean that a separate stage

is required.

It should also be noted that the order of

processes shown in the development and

test process model need not be followed

exactly, as some projects, for instance, will

perform the story-level regression testing

more than once in a sprint, and may end

the sprint with acceptance testing.

Different testing skills?
In many respects the testing processes

followed in an agile sprint are much the

same as those performed during a

traditional project, as the testing still has to

follow a fundamental test process.

Differences typically arise in two areas:

automation and the test basis (i.e. how the

software under test is specified).

User stories
Unsurprisingly, agile projects prefer a lean

approach to specification, which typically

means that specifications (user stories) are

far shorter than in (well-run) traditional

projects (but remember bigger is not

always better!). This economy of

documentation is partially offset by the

fact that the author of the user stories is

normally close at hand and can be

questioned directly when issues arise. In

many agile projects testers are closely

involved in the story writing, teaming up

with business analysts to ensure that the

stories are complete and testable – and

ideally helping to define acceptance

criteria up-front.

Isn’t agile testing all exploratory?
A natural and common response by testers

to poor specifications is to go for an

exploratory testing approach, but this

scenario should not occur on agile projects.

Not because exploratory testing is

inappropriate, but because poor

specifications should be rare. This situation

does not, however, just happen because we

have labelled the project as ‘agile’ – the

agile team need to ensure it happens by

adopting a process that supports the

creation of user stories that include the

minimum amount of information needed to

both develop and test the requirement

described by the story. One way of doing

this is for a tester to be directly involved

when the stories are created, so

guaranteeing that the stories take into

account and support the tester’s

perspective. Another way is for the story

template to require authors to explicitly

include acceptance criteria with the story

and for the team to never accept stories

into a sprint that are not complete in this

respect.

Unless the agile project is dysfunctional

and adequate user stories are unavailable

then the testing in an agile project is not

just exploratory (see ‘agile testing’ below).

You need to have the full range of test

techniques available to you, so that you

can select the right one for the situation.

Agile projects produce software for a wide

variety of applications, some of which

need to meet regulatory requirements and

some of which may be safety-critical,

meaning we can’t just rely on a single

approach with no repeatability.

Exploratory testing may often be an

appropriate choice, but rarely will you use

exploratory alone; I would normally expect

it to be used to complement more

systematic techniques. And, of course,

where we create automated tests (discussed

on next page) these tests are necessarily all

scripted (and so not exploratory)

encouraging us to use an exploratory

approach to provide balance.

Agile Testing
The misunderstanding that all testing on an agile project is exploratory is perpetuated by misuse of the term ‘agile testing’ as a synonym for ‘exploratory testing’.

AGILE TESTING ≠ EXPLORATORY TESTING

The term ‘exploratory testing’ was coined in 1983 by Cem Caner, and the following description is provided by James Bach, a leading advocate:

Exploratory testing is simultaneous learning, test design, and test execution.

In other words, exploratory testing is any testing where the tester actively controls the design of the tests as those tests are performed and uses information gained

while testing to design new and better tests.

If, at one extreme, fully scripted testing is performed where all tests are designed up front and test execution is simply running these pre-designed tests then

exploratory testing provides the opposing view of this. In practice exploratory testing does not have to be completely spontaneous and ‘partially planned’

approaches such as session-based (exploratory) testing have been found to be very successful.

Exploratory testing as an approach can be considered to align closely with the spirit of the agile manifesto, but care should be taken to not equate exploratory

testing with the testing performed on agile projects. It is widely accepted that the most effective test strategies (and this applies to both agile and non-agile

projects) include both systematic scripted techniques and exploratory testing. In fact, given the reliance of agile projects on test automation (which inevitably uses

scripted tests), it becomes obvious that agile projects cannot use a test strategy based solely on exploratory testing.

Thus, given that most people associate the term ‘agile testing’ with the testing performed on agile projects, it becomes clear that agile testing cannot be considered

another term for exploratory testing. Conversely, exploratory testing can be considered to be an agile approach to testing.

4

Test Automation Skills
Although automation is common in

traditional projects, it is an absolute

necessity in agile projects (despite it being

on the ‘of less value’ right-hand side of the

manifesto). Test-driven development,

automated builds and continuous

regression testing all rely upon automation

and won’t work without it, while story-

level regression testing and acceptance

testing are also automated on many agile

projects.

Do not worry, however, if you are not a

tools expert. On many agile projects the

test analyst does not take responsibility for

supporting test automation as this is often

considered to be the responsibility of either

a specialist tools developer or a ‘part-time’

job for one of the developers. So not being

able to program and not being a test

automation specialist does not disqualify

testers from working on most agile

projects.

Lean development and testing
It appears as though developers get a

definite benefit from the use of the lean

approach advocated on agile projects as

their requirement to document is

substantially reduced – and who likes

creating documentation? You might be

asking yourself if there’s a similar benefit

to be gained by the testers – and there is.

A typical attribute of a successful agile

project is a co-located team where each

team member can speak to another without

having to move from the team area (and

ideally their desk). This introduces the

possibility that when testers identify a

potential issue with the software they

simply go to talk to the relevant developer

about the issue. This works best when

testing is performed as soon after the

developer releases the software to test as

possible. If the issue can be immediately

resolved by the developer then it can be

argued that there is then no need for the

issue to be recorded in the project’s

incident management system. Of course,

where the issue cannot be resolved within

the current sprint then it needs to be

documented. The counter argument for

recording every issue found by testing

often cites the situation where a developer

may just nod to the tester but then

subsequently ignore or forget the issue.

This argument, however, is flawed as the

software will not get signed off as tested

until it passes the tests, which it currently

has not and will not do until the issue is

resolved and the software retested.

No incident reports?
A traditionalist may well find this a

difficult concept as previously they will

have been forced to diligently document all

issues and may well argue that without

metrics no improvement can take place.

However, in an agile project a

retrospective is held at the end of each

sprint to agree how improvements can be

made and most suggestions will be

supported by argument based on what

happened in the last few weeks rather than

an analysis of incident reports collected

over a prolonged period. Perhaps the most

persuasive argument I have heard for

recording all incidents was made by two

testers on a successful agile project whose

boss was a traditionalist. His major input

to their annual appraisal was the number of

issues they had raised during the last year!

In contrast, I find the most persuasive

argument for not collecting fault metrics is

to ask those who advocate their collection

when they last found time to analyse them

and act on the results.

The tester benefits on two fronts from not

having to document all issues they

discover. First, they don’t lose the time

that is spent on writing up each bug report.

Second, there is less chance that their bug

reports will cause an ‘over the wall’

division in the team between developers,

who see themselves as being positive and

moving towards the goal of delivering

usable software, and testers, who are seen

as simply trying to slow this process down.

On an agile team all team members are

supposed to be working together towards a

single goal and, if done with sensitivity,

verbally communicated issues are easier to

accept than those received from an

anonymous incident management system.

So are all pigs equal?
George Orwell’s anti-Stalinist novel,

Animal Farm, begins with the animals

declaring their equality, but later the pigs

form an elite and move to "all animals are

equal but some animals are more equal

than others". In an agile project we have

already seen that the sprint team (all who

are fully involved) are referred to as pigs,

but are all members of the sprint team

considered equal? It certainly appears as

though the developers get major benefits

from working on agile projects and most of

the drive towards agile comes from

developers. But, do the testers in an agile

project team also gain from going agile?

The adoption of a lean approach in agile

means that the amount of documentation is

kept to a minimum, which is perceived as a

benefit by all those that have to generate it.

A concern of testers is that this is taken too

far and inadequate documentation is

available to support testing (and future

changes), but in a well-run agile project

practices should evolve to ensure a happy

medium is achieved. Of course, the

extension of this lean philosophy to

incident management means that testers

gain a similar benefit.

Test-driven development (TDD) is an

advantage to both the developers and the

project as a whole. Once they have

grasped how it works nearly all developers

embrace it as the only way they want to

write software. Lead developers also like

it as even their less capable programmers

seem to produce reasonable quality code

when using it. TDD generally results in

higher quality code and creates automated

tests as a by-product; these can then be

used for automated unit level regression

testing at practically no extra effort. This

practice also raises developers’ awareness

of testing, which can only be of benefit to

the testers.

As mentioned earlier, the team spirit and

trust in a well-run agile team is considered

a major benefit by those working in it; this

applies equally to the testers as long as

they are embedded as part of the sprint

team. In this situation, the tester shares

with the rest of the team in the

responsibility for the team’s outputs. In a

successful team this means they also share

in the reward of knowing they are

producing something useful to the users,

and, importantly, they get this (hopefully)

positive feedback on a frequent and regular

basis.

The best deal
In many respects I believe the testers get

the best deal of all those working in an

agile team, although this is partly based on

comparing their agile situation to that on

traditional projects. In agile they typically

take part in a wider variety of tasks, even

5

over the short duration of a typical sprint.

They get to interact closely with the

developers and BAs and can even get

direct access to the users on a regular basis.

While working on story writing they can

expand their analysis skills, while the

emphasis on automation in agile allows

them to improve their skills in test tools

and scripting if that is an area they are

interested in. Many agile teams use a pair-

programming approach, which provides

the perfect opportunity for testers to pick

up and demonstrate programming skills,

potentially allowing them to become true

multi-functional agile team members.

If you consider there to be a career

progression within an agile team then the

most obvious move is from being a team

member to scrum master. There is no

reason that a tester could not make this

move as easily as any other agile team

member given the necessary experience,

and some of the most successful scrum

masters I have seen have graduated to that

position by way of testing.

Conclusion
So, if you are offered the choice of testing

on a traditional or an agile project, which

way should you go? That depends. If

you’ve got this far through the article it is

safe to assume you are not a software tester

who just does the minimum they need to

do each day and who has no interest in

making their jobs and lives more

interesting (if you read articles on software

testing that probably puts you in the

minority of people in the software testing

profession). So, my guess is you’d

probably be better off going for the agile

option.

But, it is not just a question of whether you

are ready to work on agile projects. There

is also the question of whether the project

is agile enough. At the end of George

Orwell’s Animal Farm the pigs have

reduced the commandments to the single

"ALL ANIMALS ARE EQUAL BUT

SOME ANIMALS ARE MORE EQUAL

THAN OTHERS." There are now many

projects that label themselves as ‘agile’,

but some agile projects are more agile than

others. If I were joining an agile project as

a tester I would need to know that the

testers are treated as pigs and that all pigs

are treated as equals.

If you want further help on making your

choice then fill in the completely

unscientific Tester’s Agile Checklist and

see which way it takes you.

Tester’s Agile Checklist

Answer each question ‘yes’ or ‘no’ then check your score using the grid below. Y/N

1 Would you be offended by being classified as a pig?

2 Do you consider exploratory testing to be the equivalent of hacking?

3 Are the testers on the project considered to be part of the sprint team?

4 Do you find contentment in writing fully documented incident reports?

5 Is the output of each sprint immediately usable by the users?

6 Are you happiest when working alone?

7 Are you too shy to question decisions made by developers and business analysts?

8 Do you find that regression testing is a waste of time?

9 Are all projects in this part of the organization agile?

10 Does the project have both a scrum master and a project manager?

11 Are the developers using test-driven development?

12 Do you find yourself panicking when faced with short deadlines?

13
Are continuous integration and automated regression testing implemented on the

project?

14 Is exploratory testing all you want to do?

15 Do you consider test automation to be someone else’s problem?

16 Can you see yourself sitting at a terminal and working on code with a developer?

17 Does the thought of a lack of detailed specifications make you uneasy?

18 Do you stick with your plans no matter what?

19
Are you willing to take joint responsibility with the rest of the sprint team for the

deliverables?

20
Are you happiest following a fixed set of procedures rather than looking for a better

way?

Award yourself one mark for each of your answers matching those shown below.

1 N 6 N 11 Y 16 Y

2 N 7 N 12 N 17 N

3 Y 8 N 13 Y 18 N

4 N 9 Y 14 N 19 Y

5 Y 10 N 15 N 20 N

Scores of 15 or more suggest you should accept the challenge of working on an agile project!

