
The Five Major Challenges to Risk-Based Testing

Stuart Reid

Risk-based testing (RBT) has been around in various forms for over 20 years, and accepted as a

mainstream approach for over half that time, now being an integral part of popular certification

schemes, such as ISTQB, and the basis of the new ISO/IEC/IEEE 29119 Software Testing standards,.

We all use risk on a day-to-day basis in our daily lives (e.g. ‘should I walk the extra 50 metres to the

pedestrian crossing or save time and cross here?’) and similarly many businesses are based on the

management of risk, perhaps most obviously those working in finance, such as banks and insurance

companies. Despite this, and the fact that RBT is not a complex approach in theory, it is still rare to

see RBT being applied as successfully as it could be. This paper initially introduces the basic RBT

concepts and then highlights the main obstacles to effectively implementing RBT and suggests

means of addressing them in practice.

RBT in a nutshell

Before considering the obstacles, let’s first briefly describe the principles behind RBT. Risk analysis is

used to identify and score risks, so that the perceived risks in the delivered system (and to the

development of this system) can be prioritized and categorized. The prioritization is used to

determine the order of testing (higher priority risks are addressed earlier), while the category of risk

is used to decide the most appropriate forms of testing to perform (e.g. which test phases, test

techniques, and test completion criteria to use). A valuable side-effect of using this approach is that

at any point the risk of delivery can be simply communicated as the outstanding (untested) risks.

The evolving business situation and the results of performing testing against perceived risks will

naturally change the risk landscape over time thus requiring RBT to become an ongoing activity. It is

best practice to involve as wide a range of stakeholders as possible in these activities to ensure that

as many risks as possible are considered and their respective treatments (or not – we may decide to

not address some risks) are agreed.

RBT Challenge 1 – RBT should work at all test levels

Many test managers are initially introduced to RBT as testers and use it to prioritize and target their

testing within a certain test phase, often system testing. The use of RBT by individual testers to

manage their own testing is certainly a valid application of the approach, but its potential at the level

of deciding test strategy for the complete project is even more powerful. At this level RBT is used to

decide and justify which test phases to use (or not) and to define test completion criteria for each of

these phases, thus addressing higher level risks.

The use of RBT at even higher levels should not be ignored. It is also worthwhile identifying risks

that apply across the whole programme or organization and determining means of mitigating these

risks via testing. Such an approach can lead to the mitigation of risks through the definition of an

organizational test policy and an organizational test strategy that will define guidelines for testing

across the whole organization. One obvious way of ensuring RBT is used at all levels is to mandate

its use in the organizational test policy, or if there is no test policy, include requirements for the use

of RBT in the organizational test strategy.

RBT Challenge 2 – RBT should address testing across the whole life cycle

As a test manager, when writing the Project Test Plan there is a temptation to only include those

testing activities that you control directly. The Project Test Plan, however, needs to address all the

testing performed across the whole life cycle whether it is carried out by testers or developers (or

any other stakeholders). After all, if the test manager doesn’t take responsibility for testing, who

else will? A common occurrence is that testing activities early in the life cycle, such as reviews of

requirements and designs, which we know are extremely efficient in terms of defect detection and

prevention, are not planned and executed effectively, if at all. A second is that the rigour of

developer testing (typically limited to unit testing) is decided by the developers alone, which may

lead to lower quality code being passed into later testing phases. We need to ensure that the

planned testing is targeted at mitigating risks as early as possible in the life cycle, even when that

testing may not actually be performed by members of the testing team.

RBT Challenge 3 – RBT should not be a ‘stand alone’ means of managing risk

Although RBT is a valid and valuable approach to managing testing, it becomes far more powerful

when it is integrated with the risk management performed by the project manager and the

developers. In this way, we can share a common understanding of the risks to the project (ideally

documented in a shared risk register), how these risks interact (e.g. poor development leads to

higher testing costs), and how they should be mitigated. This allows us to ensure risks are mitigated

in the most efficient manner by those that are best placed to do it; often prevention by developers is

far more efficient than later detection by testers.

If introducing RBT into an organization, be sure to take advantage of any other risk-based

approaches to project management and development that are already there. Not only is it far better

to end up with an integrated approach to risk management, but getting buy-in to risk management

from all the relevant stakeholders is time consuming and if they are already managing risk in other

areas it is far easier than starting from scratch.

RBT Challenge 4 – RBT requires a ‘professional’ level of test maturity to work effectively

RBT will not work if those attempting to use it do not possess a high enough level of test maturity.

In order to be able to select the testing that is most appropriate for a given risk, then the tester or

test manager must know the range of testing options that are available to them and how these

options relate to the different risk types. This requires a practical level of familiarity with test case

design techniques, the effectiveness of each at detecting different types of defects (and so

mitigating risks), and in which test phases they are most effective. This knowledge is the bedrock of

the professional software tester. In an industry where many testing practitioners find it difficult to

name more than one test case design technique (let alone apply it), it is not surprising that many

struggle to apply RBT effectively. One specific group of testers that seem to have particular difficulty

applying RBT are those that limit themselves to ‘requirements testing’, assuming all requirements

are equal, and performing no test prioritization. Typically these testers are not aware which test

case design techniques they are using (if any), or that there are options open to them to vary the

level of rigour of their testing for different levels of risk. This is one area for improvement where

many testers could cost-effectively spend some time.

RBT Challenge 5 – RBT should not only address risks in the deliverable product

Most new users of RBT tend to concentrate on the risks in the deliverable product (e.g. the risk that

the accounting system miscalculates profits or the risk that the web-based system discloses

customer details), however for RBT to work effectively we also need to consider the risks to the

performance of testing on the project itself. This category includes risks such as the late delivery of

code from developers and the lack of testing resources available to the test manager. For RBT to

work most effectively both product and project risks (and their mitigation) need to be considered

together as they can have an immediate effect on each other, and the optimal balance needs to be

achieved. For instance, if there is a project risk that the available time for testing is shortened it is

not satisfactory to simply reduce the amount of testing as this will typically result in fewer defects

being detected and will nearly always result in a consequential product risk of a ‘buggy’ deliverable.

In this case any mitigation needs to strike a balance between the two interacting risks to achieve an

outcome that is acceptable to all stakeholders, and the ability to successfully identify and implement

such compromises is the sign of a true professional test manager.

Conclusions

RBT is known to be best practice for today’s professional testers, but, despite the simple concept,

many testers struggle to apply it in an effective manner. This is often due to the scope of RBT as

applied being too narrow, by it not encompassing the higher levels of testing, such as in the

organizational test strategy, and by it not being used as the basis for test planning that covers the

whole life cycle. RBT can also fail to fulfil expectations when it is not integrated into the wider risk

management practices within an organization, or when RBT is only used to address risks in the

deliverable software rather than also considering the risks to the testing itself. These challenges can

largely be addressed by the industry changing its perspective on RBT and widening its view.

Probably the biggest challenge to the effective use of RBT is the lack of maturity of test practitioners,

however, this should be seen as an opportunity for testers to ensure that they acquire the full

‘testing toolset’ to allow them to effectively mitigate the risks with the right testing options.

