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Autonomous Cars & Software Testing – Part 3 of 3 

Introduction 

This is the third part of a three-part article on autonomous cars and software testing.   

The first part of the article introduced the reasons for developing autonomous cars and the high-

level technological challenges that are involved.  It then considered some of the ethical issues, and 

suggested areas where regulation is needed.   

In the second part, the new technologies that are needed for autonomous systems were described 

in more detail, such as in the areas of sensors, vehicle-to-vehicle communications, and machine 

learning.   

This part provides explanations of how traditional automotive lifecycle practices of requirements 

specification and architectural design must change for autonomous cars.  The article then suggests 

how autonomous cars will provide new challenges and opportunities for software testing. 

The first two parts are aimed at anyone who wants to understand more about autonomous cars, 

while this part is more focused at those involved in managing or performing software testing of the 

autonomous systems inside them. 

Specifying Requirements for Autonomous Vehicles 

The main difference between the requirements for autonomous cars and other vehicle systems is in 

the specification of how the autonomous system should perform the ‘decision-making’ function, as 

shown in Figure 1.   

 

Figure 1: Basic Autonomous Car Functions 

 

For a SAE Level 5 autonomous system [1], in which the car takes complete control away from the 

driver (e.g. no steering wheel), this requires the system to be able to react to any driving situation 

safely with no human input.  In some ways this makes it easier to specify the requirements of such a 

system, as we know it must be able to cope with anything a car could encounter with no restrictions 

or constraints, so the requirement is quite clear, if exceedingly difficult to deliver.   
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However, fully autonomous cars are still quite some way into the future, and before then it is highly 

likely that we will first produce SAE Level 3 and 4 cars.  For these lower levels, the range of situations 

in which the autonomous system should be able to fully control the car is constrained to a specific 

set of driving scenarios (i.e. specific functionality in lower risk environments, such as keeping a safe 

distance at low speed).  In terms of requirements specification, these driving scenarios can be 

considered in two parts.  The first part defines the function provided by the autonomous car and 

second part defines the set of constraints within which we expect this function to be able to operate 

safely. 

Defining Constraints for the Autonomous Functions 

In the US NHTSA ‘Federal Automated Vehicles Policy’, published in 2016 [2], one of the key parts of 

the safety assessment is the definition of the ‘Operational Design Domain (ODD)’ for the 

autonomous car.  According to the NHTSA, at a minimum, this ODD would include the following 

information to define the constraints on a function: 

• Roadway types (interstate, local, etc.) on which the function is intended to operate safely; 

• Geographic area (city, mountain, desert, etc.); 

• Speed range; 

• Environmental conditions in which the function will operate (weather, daytime/night-time, 
etc.); and 

• Other domain constraints. 

When the car leaves the constraints of the ODD (e.g. the car moves onto a different road type or the 

weather conditions change – or the system determines it is failing), the system is expected to safely 

hand back control to the human driver.  As was discussed in one of the earlier parts of this article, 

this handover is known to be a dangerous area, as the time taken for a driver to regain situational 

awareness can be quite long.  It is reasonable to expect systems to put the car into a minimal risk 

situation (e.g. pulled over at the side of the road with hazard warning lights flashing) if the car’s 

driver does not take back control within a reasonable time. 

Because autonomous cars will eventually have to be regulated (the NHTSA Policy is still only 

guidance), the different ODDs will need to be specified in a consistent (ideally standard) format.  

Various schemes have been proposed for specifying these constraints, and the AdaptiVe (Automated 

Driving Applications Technologies for Intelligent Vehicles) project [3], which was co-funded by the EU 

and various car manufacturers, has created a detailed classification scheme for those factors that 

affect autonomous car functions.  At the top level, this scheme uses three categories (vehicle, driver 

and environment) that need to be defined.  As an example, to demonstrate the level of detail 

required by the scheme, the environment is broken into the sub-categories of road, visibility and 

traffic, which, in turn, is described by the following parameters: 

• mixed traffic (yes, no) 

• traffic participants (non-motorized, motorized: slow, motorized: fast)  

• traffic flow (moving traffic, slow moving traffic, stationary traffic) 

• road type (motorway, highway, interstate, rural road, arterial road, urban road, residential 
district road, parking area/parking deck and garage) 
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• road accessibility (public, private) 

• road condition (good, slippery, bumpy) 

• road geometry (straight, curved, steep) 

• road infrastructure (physical cut-off, good lane markings, guardrails, deer fences, emergency 
lanes, hard shoulder and traffic lights).   

• good visibility 

• reduced visibility due to obstacles (vehicles, infrastructure) 

• reduced visibility due to weather (fog, heavy spray, heavy rain, heavy snow).   

Each of the above traffic parameters is subsequently described in more detail in the AdaptiVe 

scheme documentation [3].  

Defining Autonomous Vehicle Functions 

In addition to understanding the ODD, which provides constraints on where and when the 

autonomous functions can operate, we also need to specify the actual functions provided by the 

autonomous systems. 

The classification scheme from the AdaptiVe project [3] defines, in detail, 33 separate functional 

classes for autonomous car systems from SAE levels 1 to 5: 

• Cruise Control  

• Adaptive Cruise Control (ACC) 

• Lane Keeping Assistance (Type I – correction when needed) 

• Lane Keeping Assistance (Type II – continuous steering) 

• Lane Keeping Assistance (Type III – continuous steering – no human)  

• Active Lane Change Assistance  

• Combined ACC and LKA Type II  

• Active Traffic Light Assistance  

• Narrowing Assistance  

• Construction Zone Assistance  

• Traffic Jam Assistance  

• Highway Assistance  

• Overtaking Assistance  

• Parking Assistance with steering  

• Parking Assistance with steering and accelerating/braking  

• Key Parking  

• Traffic Jam Chauffeur  

• Highway Chauffeur  

• Overtaking Chauffeur  

• Platooning  

• Driverless Valet Parking  

• Tele-Operated Driving – Urban  
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• Traffic Jam Pilot  

• Highway Pilot  

• Overtaking Pilot   

• Urban Robot Taxi  

• Automated Mining Vehicles  

• Automated Marshalling of Trucks  

• Universal Robot Taxi  

Autonomous Car Safety Rules 

If we can define the functions that are provided by the autonomous car (see above) and the 

environmental constraints within which these functions are expected to work safely (e.g. the 

operational design domain), the third, and arguably most important part of the specification of 

requirements are the rules which these functions must work within.  These rules should define the 

safety constraints for the autonomous car functions. 

 

 

 

Figure 2: Factors affecting Autonomous Driving Rules 

The set of rules used by the decision-making function of the autonomous system are derived from a 

variety of sources, as shown in Figure 2.  The legal driving laws should be used to identify those rules 

that are there to prevent accidents (e.g. speed limits, safe braking distances) and those procedures 

that ensure an efficient flow of traffic (e.g. give right of way to traffic on a roundabout).  A problem 

with driving laws is that they are country-specific and will need modification for each country where 

an autonomous car is sold.  Physical laws need to be considered as these are used along with vehicle 

attributes (e.g. weight), environmental factors (e.g. road surface) and human driver attributers (e.g. 

reaction time) to calculate actual stopping distances at different speeds.  The rules also need to 

consider 3rd party attributes, such as the speed of pedestrians (who might rush out between parked 

cars in front of us) and other road infrastructure, such as barriers. 
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Ideally these rules would be common across all autonomous car systems, but initially they will have 

to be country-specific because they must align with country-specific legislation (e.g. driving laws), so 

that human drivers not using autonomous cars do not need to learn new ‘rules of the road’ when 

they interact with autonomous cars.  However, those rules that are derived simply for safety (i.e. to 

avoid collisions) should be able to be kept common across all countries (accidents, and the need to 

prevent them, are similar everywhere).  For instance, you can imagine a ‘safe distance to car ahead’ 

rule.  This rule could define a formula for determining the minimum distance that should be left to 

the car in front, dependent on the speeds of the two vehicles, the road surface, the visibility to the 

car in front, and the maximum rate of braking of the car.  Once agreed, such a rule would form part 

of the regulations for any autonomous system that included a function that controlled the distance 

to a vehicle in front (e.g. appropriate for adaptive cruise control, but not for self-parking), and could 

be applied as shown in Figure 3.  Here we see that the autonomous system is implementing an 

adaptive cruise control function – and so would only need to apply those safety rules that were 

relevant to keeping a safe distance to the vehicle in front (e.g. any rules concerned with the safety of 

turning the vehicle out of the lane would be irrelevant – and covered by a separate rule).   

 

Figure 3: Decision-Making with Rules 

Other similar safety rules could be defined, for example, for avoiding collisions with pedestrians who 

step out into the road, and for overtaking or pulling in front of other vehicles.  The developers of 

autonomous systems would need to ensure their systems complied with these safety rules, although 

they may find that for the comfort of the passengers their systems would not need to always work 

on the limits defined by these rules.  Regulatory bodies would use these safety rules to define the 

test cases used for certification.  In practice, the regulatory body would need to own the rules and 

be sure that a complete set were identified.  An incomplete set would mean that some unsafe 

scenarios were not tested (and their avoidance probably not implemented by some builders of 

autonomous systems). 

Implementing a complete set of safety rules would not guarantee that the autonomous car would 

have no accidents.  Although the decision-making software would not deliberately issue a command 

that should result in a collision, there could still be accidents caused by other vehicles, pedestrians, 

mechanical failures, faults in the sensing function, and defects in the decision-making software. 
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Mobileye (part of Intel) has designed a framework called Responsibility-Sensitive Safety (RSS) that 

includes rules for assigning blame for accidents involving autonomous cars, based on a mathematical 

model (it also covers economic scalability) [4].  This framework, in effect, defines safety rules similar 

to those described above. 

Testing the Software for Autonomous Cars 

The testing of the software controlling autonomous cars will need to build on the traditional 

approaches to software testing that have been around for many decades, which are already required 

by the ISO 26262 standards [5] and defined in the ISO/IEC/IEEE 29119 [6] and ISO/IEC 20246 [7] 

standards.  

However, autonomous car software introduces some new challenges for software testers.  For 

instance, ensuring the safety of autonomous cars in the many different scenarios they will 

encounter, will make the testing both a complex and time-consuming activity, which will mean that 

virtual environments and test automation will be increasingly important.  Also, the testing of the 

machine learning, which is an integral part of the software that implements the sensing and 

decision-making functions shown in Figure 1, is a new area that is constantly changing.  There are 

also other areas, such as the testing of the driver-autonomous car interface that will need to be 

carefully considered. 

Not Just Traditional Testing 

One of the big challenges to testing autonomous car software is the safety-related nature of the 

systems.  Users of autonomous cars will expect these cars to be quite a bit safer than those driven by 

humans, which will mean that their average serious crash rate (resulting in death or serious injury) 

will have to be far above 150,000,000 km.  Different commentators have estimated different values 

for the number of kilometres that would need to be driven by test cars to reach statistically 

significant levels of confidence in the safety of the systems, ranging from one billion to eight billion 

km of serious crash-free testing, which is not realistic if we expect to see autonomous cars on our 

roads in the near future. 

The complex nature of the systems, and the range of unpredictable environments they will have to 

work in, may also mean that the traditional approach of using safety cases may become so 

complicated, due to the number of safety arguments involved and their complexity, that a more 

measurable approach, such as testing becomes more important. 

Testing against Safe Scenarios 

In the previous section, on specifying requirements for autonomous cars, we introduced the 

concepts of specifying the autonomous functions that the system will perform along with 

corresponding constraints and safety rules that they must follow.  These requirements can be 

considered to be a ‘safe scenario’.  Any autonomous vehicle that provides a specific autonomous 

function will need to follow the relevant safety rules (e.g. not get too close to the car in front) that 

apply to that function within the defined constraints (e.g. in daylight) and stop providing the 

function when outside the defined constraints. 



 

7 

Autonomous Cars  ©Stuart Reid, 2017 

 

 

From a regulatory perspective, that means the regulatory body would expect to be able to test any 

vehicle that provides autonomous functions to check that it meets the relevant safety rules, while 

within the defined constraints.  Obviously, the car manufacturer will need to test that their car 

meets this requirement, but, given recent problems with trust in manufacturer testing, it is likely 

that the regulatory body will also run their own independent tests. 

Although the safe scenarios may be defined in a standard, these scenarios would be used to 

generate a potentially infinite number of test cases, when the many combinations of different 

vehicle speeds, weather conditions, road surfaces, pedestrians, road formats, etc. are considered.  

However, the safe scenarios will be limited to ensuring road safety, and, as much as possible, the 

number of these scenarios should be kept to a minimum to allow safety testing to be accomplished 

within relatively short timescales and without costing too much. 

In practice, the regulatory body needs to ensure that no test case based on a safe scenario can cause 

the car to break a safety rule, which means that their test suites may well comprise of many edge-

case tests that are more likely to ‘break’ the system.  The car manufacturers will also need to 

execute such safety-related tests, but they will also need to ensure that a far wider range of 

scenarios are also tested. 

Autonomous Car Two-Part System Architecture 

For a manufacturer of an autonomous car, ensuring a car passed the tests based on safe scenarios 

would be an absolute necessity.  First, for the safety of their customers and other road users, and 

second, to ensure their cars were allowed on the roads and were insurable.  However, the car 

manufacturers will also need to perform a second set of tests that are not based on safe scenarios, 

but on the non-safety based functionality that is needed to drive the car. 

For instance, if an autonomous car function needs to determine and follow a route from A to B, this 

is not, in itself, safety-related, but it still needs to be tested.  In terms of system architecture, the 

autonomous car systems may well use a two-part architecture, whereby the smaller part of the 

system manages the safety-related functions, while the larger part of the system manages the 

remaining functions (and both are kept as independent as possible). 

From a testing perspective, the testing of the safety-related functions will necessarily be far more 

rigorous than for the rest of the system. 

Virtual Testing of Autonomous Car Systems 

As was mentioned earlier, cars on public roads would need to be tested over distances in the region 

of billions of kilometres to provide statistically significant confidence in their systems.  This is 

obviously impractical, and so we need a mechanism to speed up the test process.  This can be done 

by using virtual testing on simulators, where we can run many tests in a relatively small timeframe 

(we can run them much faster than real time) that cover a wide variety of scenarios in different 

simulated environments. 

The hierarchy of different test environments is shown in Figure 4.  The pyramid shows that the 

virtual tests provide the foundation, and vast majority, of the necessary tests (the figure is not to 

scale – in reality the proportion of virtual tests would be far larger).  At this level, we can also test 
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scenarios that are too dangerous to test in real vehicles.  The later tests, initially in a restricted 

proving ground and then on public roads, provide opportunities to validate the results of the earlier 

tests and to test scenarios and identify problems that could not have been done in the previous, less 

realistic, environment. 

To be able to provide this level of virtual testing, we will need sophisticated test environments that 

provide a high level of realism and that can run, record and analyse results very fast.  The generation 

of tests will also need to be automated from defined scenarios, and it is likely that this automated 

generation will also be based on feedback from earlier tests.  This will be an area that is a great 

opportunity – and challenge – for automotive software testers. 

 

Figure 4: Different Test Levels 

Testing Machine Learning Systems 

In previous parts of this article, we saw that current implementations of the sensing and decision-

making functions of an autonomous car (as shown in Figure 1), are typically based on a form of 

artificial intelligence, more specifically machine learning.  This is because the multi-dimensional 

optimization that needs to be performed by these functions cannot be done effectively using 

traditional design and programming techniques.  However, testing machine learning systems is quite 

different from traditional testing for several reasons.   

First, the results from machine learning systems are non-deterministic.  This means that you cannot 

predict the exact result that the system will produce, as it may produce different results from the 

same inputs simply because it uses slightly different starting conditions for its randomized 

algorithms.  For instance, imagine you are testing a route planning function that initially randomly 

selects many possible routes and then uses a fitness function to select the best of these randomly 

selected routes.  Given the random nature of the how the initial set of routes are identified, you 

cannot know how good the ‘best’ route (according to the fitness function) will be.  If testing, you 

would need to set limits on how good the selected route would need to be to pass the test (e.g. the 

selected route must be less than 195 km rather than selected route must be exactly equal to the 

shortest possible route of 193.25 km). 
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Machine learning systems are made up of layers of ‘neurons’ that are connected to form a neural 

network, with each of the connections labelled with probabilities or weights.  The neural network is 

generated based on a set of training data (e.g. pictures of road signs paired with labels describing 

them).  It is impossible to predict in advance what these weightings will be (training sets often 

contain many thousands of pairs of inputs and each extra pair potentially changes the weightings in 

the neural network), and so it is also impossible to predict exactly what results the system will 

produce when presented with test data.  Here, again, we typically need to consider whether the 

actual set of results is within acceptable limits (e.g. it correctly identifies the road sign in 99% of 

cases). 

Another problem with testing machine learning systems is that the generated neural network can be 

very difficult to interpret by a human, so there is often little benefit in manually reviewing the 

generated neural network for validity in the same way you can review code. 

Challenges with Testing Machine Learning Systems – Test Data 

When we are testing a machine learning system, one thing we cannot do is use the same data for 

testing that we used to train the system.  Fairly obviously, this would not be a reasonable test – we 

are using an artificially intelligent system not to check whether it can recognize a previous situation 

it has seen before (we would not need artificial intelligence for that), but to use the situations it has 

seen before to react sensibly when it encounters new situations.  Therefore, our test data set must 

be completely independent from the training data set (otherwise we risk what is known as 

overfitting of data).  However, when we find test cases that cause the machine learning system to 

fail, we should feed these back into the system as training data, so that in the future, the system can 

cope with similar situations.  Test generation is problematic, as it can be very expensive to manually 

generate this test data – and the cost of test generation is likely to be similar to the cost of training 

data generation.  

If we are testing a machine learning system for an autonomous car, we would need to collect a lot of 

test data from the real world, and it would need to be correctly labelled.  For the testing of the safe 

scenarios, this could hopefully be automated by use of a scenario generator based on the defined 

safe scenarios.  It should be possible to record real world data and then combine this with the safe 

scenarios, and use traditional test design techniques to ensure a reasonable level of coverage of the 

scenarios.  For testing that the sensing function correctly interprets the sensor data, the generation 

of test data sets is, at least initially, typically a more human-intensive activity, although not 

particularly highly skilled.   

Challenges with Testing Machine Learning Systems – Black Swans 

Until it was discovered, there was no concept of a black swan outside Australia, because in other 

countries all swans were white.  So, intelligent non-Australians, when presented with a black swan 

had no idea what it was (and would probably have argued that black swans did not exist).  In the 

same way, an artificially intelligent system will have problems with some situations and images that 
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it has never encountered before.  Thus, it is important that as many scenarios as possible are 

presented to the machine learning system as training data.  From a testing perspective, we need to 

test that enough unusual scenarios have been presented to the system so that we can have 

confidence that it can handle similar unusual scenarios.  We know that in traditional testing it is 

often the boundary cases (often called edge cases in AI) that cause problems to the system, and so 

the testing must cover as many of these edge cases as possible.  It is likely that scenarios recorded by 

vehicles on public roads will be a good source of such scenarios, and non-autonomous cars are 

already gathering such data for testing. 

Challenges with Testing Machine Learning Systems – Research Ideas 

There are many researchers considering the problem of building and testing machine learning 

systems, and there are several testing areas being considered.  For instance, it has been found that 

measuring test coverage of the neurons in a neural network in an approach analogous to white box 

test coverage of traditional systems may be useful.  This approach can be used to ensure sufficient 

tests are generated to cover all the neurons, and it has also been used to compare neuron coverage 

when one machine learning system is used to test the output of another one. 

Due to their nature, machine learning systems can sometimes generate outputs that are very 

different from a previous output even though the input has changed very little.  When testing, we 

can use this apparent discontinuity to monitor when a small change to a scenario results in a big 

change to the system’s response.  An adversarial approach to the testing of the sensing function 

uses this idea by taking human generated test inputs and using tools to slightly change the images, 

perhaps by only a few pixels that would not be noticeable by a human eye, and doing this many 

times until one of these small changes fools the AI sensing function. 

Usability Testing 

As we described earlier, there are known problems with drivers keeping their attention on the 

driving when some SAE Levels 2 and 3 autonomous systems are used.  This is because the system 

takes so much control that after some time the driver becomes bored, begins to trust the system 

(probably too much), and so is not in a position to take over the driving if the system needs to hand 

back control.  One response to this problem is for the system to monitor the attentiveness of the 

driver, but such monitoring can often simply provoke drivers into finding ever more devious ways of 

fooling the system (as of January 2018, an orange jammed in the steering wheel has been shown to 

fool the Tesla Autopilot [8]). 

There could be other potential problems with the human-system interface, as it is currently unclear 

on the minimum amount of information the drivers (or passengers) of an autonomous car need to 

be given when everything does not go perfectly (e.g. the system has had to react to an unexpected 

situation).  There is also the question of how much information an autonomous car needs to give to 

pedestrians and other road users about what it is intending to do.   
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These areas, and others, are going to require specialist usability testing to be applied as part of the 

overall test strategy for autonomous cars. 

 

 
 

Conclusions 

This article (delivered in three parts) has introduced some of the basic concepts that support the 

development of autonomous cars.  A basic framework of autonomous car functions has been used 

(see Figure 1) to reason about the challenges that need to be overcome in the areas of sensing and 

decision-making. 

In the first part, we considered the rationale for autonomous cars, and the number of lives that can 

be saved by replacing human drivers with computerised systems.  We introduced the SAE Levels of 

autonomy [1], which are used to define the amount of autonomy provided by an autonomous car or 

function and investigated the timescales within which we can expect to see commercial autonomous 

cars on our roads.  We also introduced some of the ethical issues surrounding autonomous cars, 

such as whether they will protect their occupants ahead of pedestrians (the rule in Germany), and 

how they will obey the driving regulations.  We also considered the role of regulators in controlling 

the use of autonomous cars and ensuring that manufacturers share safety data in the same way that 

airlines share their accident reports.  With autonomous cars, we can expect the requirement for 

them to report any safety-related incident automatically to the regulator. 

In the second part, we looked at the specialized technology that is employed by autonomous cars.  

To be able to drive without driver input, these cars need to know exactly where they are, and what is 

in the surrounding area.  This means they require excellent sensing technology, and new forms of 

sensors are becoming available very quickly.  Alongside these sensors, these vehicles are also making 

use of extremely detailed mapping technology, so that they do not only have to rely on cameras and 

other sensors to determine the direction they go next.  The decision-making part of an autonomous 

car is controlled by artificial intelligence (AI), and so a brief introduction into AI and machine learning 

was provided, as this will be at the core of nearly all autonomous vehicles. 

In this final part, we have considered how the requirements for autonomous vehicle systems will be 

specified, and suggested a three-way approach, which defines the autonomous function, the 

environmental constraints and the safety rules which the car must follow.  These requirements will 

also play a big part in the testing of these systems, especially if they are to be properly regulated and 

insured.  Finally, we considered the new challenges of testing such complex, safety-critical systems, 

and introduced the need for highly-automated and complex virtual test environments.  We also 

introduced the challenges of testing non-deterministic AI systems, an area that is very new – and 

very different from traditional software testing. 
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