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Fault Injection Testing for Automotive Software 

Introduction 

Car systems are becoming ever more complex, while also taking more responsibility for safety-

related tasks, such as adaptive cruise control and the widely-predicted advent of autonomous 

vehicles.  To provide the necessary confidence in such automotive systems, they are designed to be 

fault tolerant and fail-safe.  Positive testing should provide confidence that the system’s functional 

requirements are met, but for safety-related systems we also need to be sure that when the 

unexpected does occur the system is truly fault tolerant or will fail to a safe state.  One way we 

address this is to perform negative testing in the form of fault injection testing - we deliberately 

inject faults into the system to assure ourselves that it reacts in the way we expected (i.e. safely). 

Sometimes these scenarios should never occur (e.g. a software task should never ‘die’ or get stuck in 

an infinite loop) and cannot be simulated by normal system testing, but with fault injection testing, 

we create the fault scenario and measure the subsequent system behaviour to ensure it is safe. 

Fault injection testing has been around for well over 30 years, and tests the dependability or 

robustness of a system in the presence of faults in the system’s environment (e.g. a faulty power 

supply, badly-formed input messages) and faults in the system itself (e.g. a flipped bit caused by 

cosmic radiation, poor design and bad coding).  It can be applied throughout the lifecycle (from early 

modelling to the testing of the complete system) and typically supplements the more normal test 

techniques by targeting that code that is only there to handle exceptional situations and so increases 

test coverage.  When applied early in the lifecycle it is typically used to improve the design to cope 

with unexpected faults, while later in the lifecycle it is used to obtain confidence that mechanisms 

for achieving dependability are working, and to find defects in the implementation of the fault 

tolerant design. 

Fault Injection Testing in ISO 26262 

The ISO 26262 set of standards was first published in 2011, and applies to the full safety lifecycle 

(concept, development and operation) of electrical and electronic systems in production-line 

passenger cars.  These standards are part of the family of safety standards based on the generic 

IEC 61508 standard, which was first published in 1998. 

Fault injection testing is recommended by ISO 26262 as shown in Appendix A.  At the system and 

hardware levels (parts 4 and 5), these requirements are explicitly focused on the implementation of 

the safety requirements and the effectiveness of fault detection mechanisms.  For the software (part 

6), the focus on safety is less obvious, and at the unit level it is implied (perhaps through the 

requirement to demonstrate robustness).  At the software integration level, the requirement is 

similarly hazy, but the note on fault injection testing explicitly states that it is for testing safety 

mechanisms. 

Fault Detection and Fault Tolerance 

There are several possible outcomes when a fault occurs in a safety-related system, as shown in 

Figure 1.  In the first scenario, a fault occurs and goes undetected for the duration of the ‘fault 
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detection time’.  Once detected, the system reacts and recovers to the safe state, which could be a 

return to normal operation or some degraded, but safe, level of operation – this system is 

demonstrating a level of fault tolerance (if we had injected the fault, then it would have passed the 

test).  In the second scenario, the fault goes undetected until the fault tolerant time interval is 

exceeded.  At this point the system enter the hazardous state as nothing was done to manage the 

fault.  In the third scenario, the fault is detected, but the system fails to react in a way that prevents 

the system entering the hazardous state (this could be because the recovery takes too long or the 

recovery was not correctly implemented).  In the latter two scenarios, the system’s fault tolerance 

appears to be lacking – and, if we had injected the fault, the system would have failed the tests. 

 

Figure 1: Moving to a safe state (or not) 

It is clear from these scenarios that fault injection testing is focused on both the fault detection and 

recovery attributes (robustness) of the system. 

Fault Injection Testing Process 
A fault injection process aligned with ISO 26262 is shown in Figure 2.  The first three activities 

correspond to activities that are performed as part of the Concept Stage of the safety lifecycle 

defined in ISO 26262-2.  For fault injection, we need to know which safety requirements are 

allocated to which parts of the architecture because our fault injection testing is primarily aimed at 

checking that the safety requirements are correctly implemented. 
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Once we know our safety requirements and the architecture of the system, we can more easily 

identify fault types that correspond to these safety requirements (those faults that could possibly 

occur and cause the system to fail). 

 
Figure 2: High-Level Fault Injection Process 

To run the fault injection tests, we need to know the typical workloads that the system will be 

running once operational (a workload is a set of tasks or functions that reflects the processing 

capacity and demand on the system), so that we can ensure our tests are run in a representative 

situation.  Otherwise we waste time running tests in unrealistic situations that provide little useful 

information. 

With a fault list and the workloads defined, we can now prepare the test environment and run the 

fault injection tests.  We will collect and analyse the test data from these tests to determine whether 

the implemented safety mechanisms met the safety requirements.  Sometimes, before we inject any 

faults, we will first perform a ‘golden run’ and record data representing the system running with no 

defects – and we can then compare this ‘golden run’ data with the data that comes from running the 

system with injected faults.  This allows us to measure how well the system recovers from the 

injected faults. 

Fault Injection Test Environment 
To perform fault injection testing, we need a special form of test environment, as shown in Figure 3 

– this supports the last two activities shown in Figure 2.  Before any testing can occur, the fault list 

and system workloads need to be available.  The controller manages the fault injection tests by 

activating the Fault Injector and the Workload Generator, which inject faults into the System under 

Tests from the Fault List and run the System under Tests under the pre-defined workloads.  The 
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Monitor tracks the test execution and records test data, as appropriate.  The Analyzer is used to 

perform test data processing and analysis. 

 

Figure 3: Fault Injection Test Environment 

Fault Injection Approaches and Techniques 
At a high level, we can consider two main approaches to fault injection.  In the first, as shown in 

Figure 4, we inject faults into the environment of the system under test (typically into the input 

stream).  The goal is to evaluate the ability of the system to handle unexpected inputs, caused by a 

fault in the environment of the system under test, such as a poor communication channel.  This 

approach is especially useful for the fault injection testing of COTS software, where we don’t have 

access to the source code.  Many of the traditional software testing techniques, such as Equivalence 

Partitioning, Boundary Value Analysis, Syntax Testing and Fuzz Testing are useful with this approach. 

 
Figure 4: Corrupting the Environment 

In the second, shown in Figure 5, we inject faults directly into the system under test.  The goal here 

is focused on testing the internal fault tolerance mechanisms. 

 

 



 

 
5 

Fault Injection Testing  ©Stuart Reid, 2017 
 
 

 
Figure 5: Corrupting the System under Test 

There are several different techniques used to inject the faults into the system under test, as shown 

in Figure 6.   

 

Figure 6: Fault Injection Techniques 

These techniques can be characterized by their: 

• controllability (ability to control when and where faults are injected); 

• repeatability (ability to obtain the same result from the same test); 

• fault representativeness (how accurately the injected fault represents real-world 
faults);  

• workload representativeness (how accurately the workloads represent real-world 
workloads);  

• observability (ability to observe and measure the effects of an injected fault); 

• intrusiveness (impact on the target system); 

• reachability (how much of the system is accessible for fault injection). 
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Each of the techniques is briefly described below: 

Radiation-Based Fault Injection 

This is used to test the sensitivity (and the devices low-level error detection and correcting ability) of 

the integrated circuits in the system to various forms of external radiation, such as electromagnetic 

interference and particle radiation.  It is not used very often due the drawbacks of low controllability 

and lack of repeatability (it is difficult to control which bits of the system are affected). 

Pin-Level Fault Injection 

Faults are injected on the electrical contacts (‘pins’) of integrated circuits or hardware components 

using probes.  This may be done with the original contact still connected (you may get two signals 

overlapping and there is greater potential for damaging the integrated circuit) or with it 

disconnected (you only get the injected signal, but requires more effort). 

Faults injected using this approach are typically stuck-at, bridging contacts, noise, reduced/increased 

voltage, etc.  With power supply disturbance fault injection, we can test the possibility of common 

cause failures due to power supply problems. 

Test Port Fault Injection 

Many microprocessors include test ports (or test access ports) that can be used to inject faults – 

these are also referred to as on-chip debugging (OCD) ports.  These test ports are well-defined by 

standards (e.g. the Nexus standard or IEEE-ISO 5001-2003).  Typically, faults can be injected into 

microprocessor instruction set registers and into main memory.  

Injecting a fault via a test port typically involves four steps:  

1 Setting a breakpoint in the software on the microprocessor via the test port and waiting for 

the program to reach the breakpoint;  

2 Reading the value of the target location (a register or word in memory) via the test port;  

3 Changing this value to a new, faulty value;  

4 Resuming program execution via a command sent to the test port.  

Software-Implemented Fault Injection (SWIFI) 

SWIFI techniques are widely used, as they are relatively easy to deploy. They can be divided into 

compile-time techniques (the fault is injected into the software before it is deployed to the system 

under test) and run-time techniques, where the faults are injected during execution of the system 

under test. 

Compile-Time SWIFI 

With compile-time fault injection, faults are put into the source, assembly or binary code of the 

software under test to simulate the effects of hardware or software faults (e.g. the original code is 

mutated).  When compiled, this results in a faulty software executable, which, when it runs, 

activates the fault.  Test execution with compile-time SWIFI is nearly always faster than with run-

time SWIFI, however, the overall time taken for this form of fault injection testing can often be 
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longer due to the effort required to decide and perform the mutation.  There is also the problem 

that the software being tested is (necessarily) different from the software that is eventually 

delivered.  

Run-Time SWIFI 

Run-Time SWIFI requires a mechanism that: 

1 stops the execution of the system under test; 

2 calls a fault injection routine; and 

3 restarts the system under test.  

There are two basic mechanisms (or triggers) for deciding when to inject a fault into the software 

during run time: 

• time-based triggers - when the timer reaches a specified time, an interrupt is generated and 

the corresponding interrupt handler associated with the timer injects the fault; 

• interrupt-based triggers - when a specific memory location is reached or a specific event 

occurs then hardware exceptions and software trap mechanisms are used to generate an 

interrupt (which injects the fault). 

Simulation-Based Fault Injection or Model-Implemented Fault Injection (MIFI) 

This technique is used earlier in the lifecycle to ensure that the models used as part of model-based 

development (MBD) correctly implement the required safety mechanisms (and so allows them to be 

fixed early).  The faults are injected into models (e.g. Simulink) from which the source code is 

automatically generated to test the behaviour of the model in the presence of faults.  

Fault Injection Tools 

As fault injection testing has been used for many years, there are many tools (commercial, open 

source and research-based) available to support it in its different forms.  The following list provides 

examples with a mix of technologies and techniques, but is, by no means, an exhaustive list and you 

should be sure to do your own systematic selection before adopting a tool. 

• BTC EmbeddedPlatform, by BTC Embedded Systems 

• Cadence® Incisive® functional verification platform by Cadence Design Systems, Inc. 

• csXception by Critical Software 

• Mx-Suite™ by Danlaw 

• EHOOKS & LABCAR by ETAS 

• CodeSonar by GrammaTech 

• OneSpin Safety Critical Verification Solution & Fault Injection App (FIA™) by OneSpin 

• Fault Injection Engine (FIE™), CosmicASIC and CosmicFault by Optima 

• Development Testing Platform (DTP) by Parasoft 
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• SafeTI Hitex Safety Kit by Texas Instruments 

• Fault Injection Tester by Suresoft Technologies, Inc  

• Z01X Fault Simulation Solution by Synopsys 

• Simics by WindRiver 

• Safety Verifier by Yogitech 

• CANoe & VectorCAST/Probe by Vector 

• ESACS, FAIL, FERRARI, FIAT, FISCADE, GOOFI-2, Grinder, ISAAC, MESSALINE, MODIFI, RIFLE, 

(Research/Open Source tools) 

ISO 26262 and Fault Injection Testing 

Many fault injection approaches are based on using tools that randomly generate faults and then 

monitor whether (or by how much) the resultant faulty system differs from the ‘golden’ system with 

no faults.  The ISO 26262 standard suggests the injection of arbitrary faults for software unit testing 

and software integration testing, which suggests that this random generation of faults is required.  A 

problem with this approach is that even when many faults are injected into systems under many 

different workloads only a small proportion of all combinations are tested – and those that may 

cause a safety problem can easily be missed.  Alternatively, the faults can be systematically 

generated based on knowledge of the safety goals, but this can be expensive if done manually and 

needs tool support.  At the software unit and integration testing levels, fault injection based on 

corruption the software under test is not really possible, so for these two levels the fault injection 

testing should be restricted to approaches based on corrupting the environment of the software 

under test. 

For the testing of the complete embedded software system, ISO 26262 does not specifically require 

any test methods, but, instead, suggests that tests previously created for unit and integration testing 

be used.  For fault injection testing this could be seen as limiting, as the safety requirements at this 

level are different and covering these safety requirements would often require the use of new, 

different fault injection test cases.  At this level, it is also possible to use the approach of corrupting 

the system under test alongside corrupting the environment. 

ISO 26262 suggests that fault injection testing for hardware-software integration testing should use 

“special means to introduce faults into the test object during runtime”.  It is unclear why the 

standard restricts the fault injection to runtime approaches when other approaches, such as compile 

time fault injection, are also available (and appropriate in the right conditions). 

ISO 26262 suggests that fault injection testing be used for improving the coverage of safety 

requirements (at various stages in the safety lifecycle), and seems to ignore the possibilities of it 

being used during the design stages to validate and improve the design of the safety mechanisms. 
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Conclusions 

Fault injection testing has been used for the verification of safety requirements and safety 

mechanisms in embedded systems for many years.  It provides a necessary addition to the more 

normal positive tests as it allows test coverage of safety mechanisms that cannot otherwise be 

tested.   The effectiveness of this test method is highly-dependent on the selection of faults to be 

injected and the workloads that are applied to the system under test during the testing.  

The specification of fault injection testing in ISO 26262 could be read as being unnecessarily 

restrictive.  However, ISO 26262 does allow the selection and use of techniques that are not 

explicitly specified in the tables when appropriate and this allows the use of some of the other forms 

of fault injection testing described above to ensure the robustness of the systems and coverage of all 

the safety requirements. 
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Appendix A – ISO 26262 Fault Injection Testing  

Part 4 - Product 

development at the 

system level 

- 

– Hardware-Software 

Level 

8.4.2.2.2 The correct implementation of the technical safety requirements at the 

hardware-software level shall be demonstrated using feasible test methods given 

in Table 5. 

Recommended for ASIL A. 

Highly-recommended for ASIL B, C and D. 

A fault injection test uses special means to introduce faults into the test object 

during runtime. This can be done within the software via a special test interface 

or specially prepared hardware. The method is often used to improve the test 

coverage of the safety requirements, because during normal operation safety 

mechanisms are not invoked. 

8.4.2.2.5 This requirement applies to ASIL (A), (B), C, and D, in accordance with 

4.3: the effectiveness of the hardware fault detection mechanisms' diagnostic 

coverage at the hardware-software level, with respect to the fault models, shall 

be demonstrated using feasible test methods given in Table 8. 

Recommended for ASIL A and B. 

Highly-recommended for ASIL C and D. 

A fault injection test uses special means to introduce faults into the test object 

during runtime. This can be done within the software via a special test interface 

or specially prepared hardware. The method is often used to improve the test 

coverage of the safety requirements, because during normal operation safety 

mechanisms are not invoked. 

Part 4 - Product 

development at the 

system level 

- 

– System Level 

8.4.3.2.2 The correct implementation of the functional and technical 

requirements at the system level shall be demonstrated using feasible test 

methods given in Table 10. 

Recommended for ASIL A and B. 

Highly-recommended for ASIL C and D. 
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A fault injection test uses special means to introduce faults into the system. This 

can be done within the system via a special test interface or specially prepared 

elements or communication devices. The method is often used to improve the 

test coverage of the safety requirements, because during normal operation safety 

mechanisms are not invoked. 

8.4.3.2.5 This requirement applies to ASIL (A), (B), C, and D, in accordance with 

4.3: the effectiveness of the safety mechanisms' failure coverage at the system 

level shall be demonstrated using feasible test methods given in Table 13. 

Recommended for ASIL A and B. 

Highly-recommended for ASIL C and D. 

A fault injection test uses special means to introduce faults into the system. This 

can be done within the system via a special test interface, specially prepared 

elements, or communication devices. The method is often used to improve the 

test coverage of the safety requirements, because during normal operation safety 

measures are not invoked. 

Part 4 - Product 

development at the 

system level 

- 

– Vehicle Level 

8.4.4.2.2 The correct implementation of the functional safety requirements at the 
vehicle level shall be demonstrated using feasible test methods given in Table 15. 

Highly-recommended for ASIL A, B, C and D. 

A fault injection test uses special means to introduce faults into the item. This can 
be done within the item via a special test interface or specially prepared elements 
or communication devices. The method is often used to improve the test 
coverage of the safety requirements, because during normal operation safety 
mechanisms are not invoked 

8.4.4.2.5 This requirement applies to ASIL (A), (B), C, and D, in accordance with 

4.3: the effectiveness of the safety mechanisms' failure coverage at the vehicle 

level shall be demonstrated using feasible test methods given in Table 18. 

Optional for ASIL A. 

Recommended for ASIL B. 

Highly-recommended for ASIL C and D. 

A fault injection test uses special means to introduce faults into the vehicle. This 

can be done within the vehicle via a special test interface, specially prepared 

hardware or communication devices. The method is often used to improve the 

test coverage of the safety requirements, because during normal operation safety 

measures are not invoked. 
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Part 5 - Product 
development at the 
hardware level 

10.4.5 The hardware integration and testing activities shall verify the 

completeness and correctness of the implementation of the safety mechanisms 

with respect to the hardware safety requirements.  To achieve these objectives, 

the methods listed in Table 11 shall be considered. 

Recommended for ASIL A and B. 

Highly-recommended for ASIL C and D. 

Fault injection testing aims at introducing faults in the hardware product and 

analysing the response. This testing is appropriate whenever a safety mechanism 

is defined. Model-based fault injection (e.g. fault injection done at the gate-level 

netlist level) is also applicable, especially when fault injection testing is very 

difficult to do at the hardware product level. For example, showing the response 

of safety mechanisms to transient faults inside hardware parts, such as a 

microcontroller, is very difficult to do with fault insertion at the hardware product 

level since it would require irradiation tests. 

Part 6 - Product 
development at the 
software 
level 

9.4.3 The software unit testing methods listed in Table 10 shall be applied to 

demonstrate that the software units achieve: 

a) compliance with the software unit design specification (in accordance with 

Clause 8); 

b) compliance with the specification of the hardware-software interface (in 

accordance with ISO 26262-5:2011, 6.4.10); 

c) the specified functionality; 

d) confidence in the absence of unintended functionality; 

e) robustness; and 

f) sufficient resources to support their functionality. 

Recommended for ASIL A, B and C. 

Highly-recommended for ASIL D. 

This includes injection of arbitrary faults (e.g. by corrupting values of variables, by 
introducing code mutations, or by corrupting values of CPU registers). 

10.4.3 The software integration test methods listed in Table 13 shall be applied to 
demonstrate that both the software components and the embedded software 
achieve: 
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a) compliance with the software architectural design in accordance with 

Clause 7; 

b) compliance with the specification of the hardware-software interface in 

accordance with ISO 26262-4:2011, Clause 7; 

c) the specified functionality; 

d) robustness; and 

e) sufficient resources to support the functionality. 

Recommended for ASIL A and B. 

Highly-recommended for ASIL C and D. 

This includes injection of arbitrary faults in order to test safety mechanisms (e.g. 
by corrupting software or hardware components). 

 11.4.2 To verify that the embedded software fulfils the software safety 
requirements, tests shall be conducted in the test environments listed in Table 
16. 
NOTE Test cases that already exist, for example from software integration testing, 
can be re-used. 
11.4.4 The results of the verification of the software safety requirements shall be 
evaluated with regard to: 
a) compliance with the expected results; 
b) coverage of the software safety requirements; and 
c) pass or fail criteria. 

 


