

Safety of Autonomous Systems

Stuart Reid PhD, FBCS

(stureid.test@gmail.com / www.stureid.info)

© Stuart Reid 2018

Scope of the Talk

- Introduction to Autonomous Systems
- Specifying Objectives (Safely)
- Online vs Off-Line Machine Learning
- Machine Learning Challenges
- Black Box Testing
- White Box Testing
- The Necessity of Virtual Test Environments
- Conclusions

Introduction to Autonomous Systems

Definition used for Autonomous System

<u>Autonomy</u>

- the capacity to make an informed, un-coerced decision
- Autonomous organizations or institutions are independent or self-governing
- the ability to act independently of direct human control and in unrehearsed conditions

<u>Autonomous System</u>

 system that changes its behaviour based on its experiences and the current situation to achieve given objectives without human control

Examples: Autonomous Systems

Basic Autonomous System Framework

High-Level Machine Intelligence - as predicted by published AI researchers

"High-level machine intelligence" (HLMI) is achieved when unaided machines can accomplish every task better and more cheaply than human workers.

The Midas Problem "마이더스의 손"

(1) STA

"I'm hungry! Make me dinner"

(7 STA

"Keep the kitchen clean"

Side-Effects, Reward Hacking and Role Models

- Reinforcement learning involves the system being rewarded for achieving objectives
 - must be aware of side-effects
 - however problems can arise with 'reward hacking' when the system 'hacks' the objectives
- Instead, we can get systems to learn from human demonstrations
 - and get feedback from humans
- BUT
 - make sure the humans are representative
 - recognize that human values change over time
 - humans aren't always the best role models...

MIT's Moral Machine (moralmachine.mit.edu)

Go to www.menti.com and use the code 41 56 35

Who should die?

Mentimeter

Better than Humans?

Online vs Off-Line Machine Learning

Continuous Online Learning

Off-Line Learning – from Day-to-Day Use

Performance Updates - Over-The-Air

STA

Machine Learning Challenges

Deep Learning Systems

Example of Machine Learning

Supervised Machine Learning

(† **S**

Mis-Classification

Checking the Training Set

Misunderstanding – Data Bias

Incomplete Training Set

Checking the Training & Test Sets

Checking the Training

Black Box Testing of Autonomous Systems

Test Challenges of Autonomous Systems

• Expected Results (Test Oracle)

 if we struggle to set the objectives, then determining expected results will be equally difficult

Probabilistic Systems and Non-Determinism

- the probabilistic nature means that predicting expected results is difficult
 - we need many more tests to be statistically confident
- non-determinism causes real problems for regression testing
- Complexity
 - autonomous systems are difficult to understand and to test
 - interacting autonomous systems may cause 'special' failures
 - many sensors can create many tests...

Example - Sensor Degradation Testing

() STA

White Box Testing of Autonomous Systems

Deep Neural Net

Activation Values

'Neuron' Coverage

Full 'neuron' coverage shows that every neuron is 'activated' (value above zero) at least once (but very basic coverage easy to achieve with a few tests)

The Necessity of Virtual Test Environments

 $(t\mathbf{S}$

Α

20% Better (than human drivers)

(† STA

Autonomous Cars – Test Environments

Conclusions

Autonomous System Costs

Conclusions – Safety of Autonomous Systems

- For the 'simple' case of off-line systems we need:
 - both black and white box testing
 - new test approaches and measures (with evidence)
 - more tests to assure these probabilistic systems
 - the support of sophisticated virtual test environments
- For the learning on-line systems we need:
 - to understand the new dangers these systems bring
- Until we reach maturity, we should use a safety net...

Safety Shell Architecture

Thank you for listening

Any Questions?