
Stuart Reid PhD, FBCS
(stureid.test@gmail.com / www.stureid.info)

© Stuart Reid 2017

Smarter Testing with
Artificial Intelligence

mailto:stureid.test@gmail.com

• Artificial Intelligence and Testing

• Bug Prediction

• Static Analysis

• Regression Testing

• Automated Test Input Generation

• Automated Stress Testing

• Conclusions

Contents

Artificial Intelligence (AI) in the Cinema

I’m sorry Dave…

Doomsday Book

Artificial Intelligence (AI) Works!

• Neural Networks

• Expert/Knowledge-based Systems

• Machine Learning

• Fuzzy and Probabilistic Logic

• Classification

• Search and Optimization

• Much of today’s effective AI uses a variety of
overlapping techniques

– and exploits the availability of processing power & storage

Artificial Intelligence Techniques

AI Toolkits

AI
Toolkits

Google
TensorFlow

Microsoft

CNTK

Theano

IBM

Watson

Torch

Caffe

AI - Smart Testing Opportunities

Bug
Prediction

Static
Analysis

Test Input
Generation

Specification
Testing

Specification-
based Script
Generation

Regression
Testing

Stress
Testing

Automated
Exploratory

Testing

Test Strategy
Assistant

Defect
Management

Usage
Profiling

Interactive
Dashboard

Smart Test
Manager

Crowd Testing

Bug Prediction

Bug Prediction – a Single Attribute

module
size

defective?

YES

NO   

 

probability of defective module?

Bug Prediction – Two Attributes

module
size

number of
revisions

 



 

 

























Bug Prediction – Multiple Attributes

Input
Data
Matrix

Module Attributes
Response

Data

A1 A2 A3 A4 A5 A6 Defective?

Example
Modules

M1 3 44.5 YES 1 0 124 YES

M2 6 56.8 NO 1 n/a 234 NO

M3 3 223 NO 2 n/a 56 NO

M4 4 12.6 YES 1 2 88 YES

M5 2 123 YES 3 2 138 NO

Bug
Predictor
Function

Function

Supervised Learning Process

Learning
Algorithm

Bug
Predictor
Function

Training Set

Accuracy

Check result

Defective?

Test Data

• Source code metrics
– Lines of code
– Number of comments
– Cyclomatic complexity
– Module dependencies

• Process metrics
– Revisions made to module
– Times refactored
– Times fixed / when fixed
– Lines of code changed (code churn)
– Module age

• People and organizational metrics
– Number of authors
– Developer experience

Bug Prediction Metrics

• “87% detection rate achieved average with 26% false
alarms”
– [Tosun, 2010]

• “73%-95% of faults can be predicted in just 10% of files”
(across 7 projects)
– [Kim, 2007]

• Best predictors are:
– People and Organizational measures (84%)

– Module change (80%)

– Fixed recently (and connected modules)

– Reused module are more error-prone than new modules

– Module age

Bug Prediction Results

Static Analysis

• Open source

• Analyses C, Objective-C and Java

– on Android and iOS

• Fast – can do millions of LOC in a few minutes

– ideal for continuous integration

• Facebook claims that approximately 80% of raised
issues are fixed (so are true faults)

• Also used by Instagram, Uber, Spotify, etc.

Static Analysis Tool - Facebook – Infer

Regression Testing

Regression Test Optimization

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Branch Y

Branch X

Branch W

Branch R

Branch P

Branch Q

Regression Test Optimization

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Risk A

Risk D
Risk C

Risk B

Regression Test Optimization

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Defect-R-0

Defect-R-3

Defect-R-1

Regression Test Selection

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Defect-R-0

Defect-R-3

Defect-R-1

Branch Y

Branch X

Branch W

Branch R

Branch P

Branch Q
Risk A

Risk D

Risk C

Risk B

Regression Test Prioritization

TC1 TC2TC4TC3 TC7

• Tests that found defects previously

• Tests that reduce execution time

• Reduce the number of tests needed

• Tests that achieve full coverage

• Test that exercise recently changed code

• Tests that address high risks

• etc.

Regression Test Optimization Criteria

• The algorithm reduces the test suite data by
approximately 50%
– [Rai, 2014]

• The techniques are 40-50% more effective in
uncovering the first failure of the changed program
– [Jiang, 2009]

• Average reduction in test suite size of 94% while
achieving requirements-based coverage
– implemented in:

• a continuous integration env’t with 30 seconds run time

• implemented at Cisco, Norway

– [Gotlieb, 2016]

Regression Test Optimization Results

Automated
Test Input Generation

Example
– Searching using a ‘Hill Climb’ Algorithm

fitness

all
possible
solutions

this could represent
the set of input values
that would achieve full

branch coverage

its easy for
the search

to get stuck
on plateaus

“are we
there, yet?”

using a fitness
function based

on coverage

Manual Test Process

Test
Inputs

Actual
Outputs

SUT

Expected
Outputs

Test
Results

Req’ts

Automated Test Input Generation

Test
Inputs

Actual
Outputs

SUT

Test Harness

Automated Regression Test Case Generation

Test
Inputs

Actual
Outputs

SUT

Regression
Test

Results
Test

Inputs

New
Actual
Outputs

Changed
SUT

U
PD

A
T
E

Expected
Outputs

Example Tools

C#

Java

CAUSTIN

Intellitest

EvoSuite

• Empirical studies have shown:
– tool support can lead to improvements in code coverage of up

to 300%

– that there is no measurable improvement in the number of
bugs actually found by developer/testers – even though more
branches are covered

• But, a set of automatically-generated regression tests
providing full coverage is an excellent starting point when
you change or refactor the code

• Danger!!!
– testers rely on the tool → little or no black box testing

– testers use the tool to meet safety-related test standards

Automated Test Input Generation - Summary

Automated
Stress Testing

• Generate pseudo-random streams of user events such
as clicks, touches, or gestures, as well as a number of
system-level events

– they pretend they are a ‘stupid’ tester

• Aim to cause an ANR (‘Application Not Responding’) or
for the app to simply crash

– so test result is easy to observe

• Require little tester input

– except to check-out the reported failures

Automated Stress Testing Tools

• Google Monkey
– built into the Android development platform - free

– fuzz testing tool – random inputs

• Sapienz
– open source

– search-based testing tool

– when applied to the top 1,000 Google Play apps, Sapienz found
558 unique, previously-unknown faults

• Dynodroid
– open source

– allows interleaving of human and tool

– when applied to the top 1,000 Google Play apps, Dynodroid
found 6 unique, previously unknown faults

Example - Android Stress Testing Tools

Defect Detection Effectiveness

0

20

40

60

80

100

120

1 2 3

Chart Title

Test Coverage

Fault Revealing Steps

• Artificial Intelligence and Testing

• Bug Prediction

• Static Analysis

• Regression Testing

• Automated Test Input Generation

• Automated Stress Testing

Conclusions

Thank you for listening ☺

Any Questions?

