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Testing as a Percentage of IT Budget

0

10

20

30

40

50 Too much testing!!!!

Is it good 
enough 
testing?

2012 2013 2014 2015

%

2016 2017 World Quality Report 2015-162018



Automation is only a partial answer
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• Tests generated by the end users
– crowd testing and A/B testing

• Tests generated using random test 
generation
– pure random and fuzz testing

• Tests generated by artificial intelligence
– regression tests and stress tests

Testing WITHOUT Test Design



Users as Testers -
Crowd Testing &

A/B Testing



• Their personas are perfect ☺
– we don’t have to guess their habits or preferences

• Their test environments are truly representative ☺

• Can we trust them? 
– use Non-Disclosure Agreements (NDAs)

– don’t tell them!

What about the users as testers?



Mobile



Android Handset Fragmentation



Crowd Testing for Multiple Devices/Env’ts
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A/B Testing
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Random Testing &
Fuzz Testing



Experimental Evidence–
Random vs Systematic Test Design
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• Airliner
– 3 GB/hour

• CCTV
– 1 TB/month

• Mobile Phone Operator
– 3 TB/day

• Globally
– 2.5 Million TB/day

Big Data - Example Data Volumes



Data Validity from Internet of Things
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Fuzz Testing
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Testing with
Artificial Intelligence



Artificial Intelligence in the Cinema

I’m sorry Dave…
Doomsday Book



Artificial Intelligence (AI) Works!



• Neural Networks
• Expert/Knowledge-based Systems
• Machine Learning
• Fuzzy and Probabilistic Logic
• Classification
• Search and Optimization

• Much of today’s effective AI uses a variety of overlapping 
techniques
– and exploits the availability of processing power & storage

Artificial Intelligence Techniques



AI Toolkits
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AI - Smart Testing Opportunities
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Static Analysis



• Open source

• Analyses C, Objective-C and Java
– on Android and iOS

• Fast – can do millions of LOC in a few minutes
– ideal for continuous integration

• Facebook claims that approximately 80% of raised 
issues are fixed (so are true faults)

• Also used by Instagram, Uber, Spotify, etc.

Static Analysis - Facebook Infer



Regression Testing



Regression Test Optimization
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Regression Test Optimization
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Regression Test Optimization
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Regression Test Selection
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Regression Test Prioritization
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• Tests that found defects previously

• Tests that reduce execution time

• Reduce the number of tests needed

• Tests that achieve full coverage

• Test that exercise recently changed code

• Tests that address high risks

• etc.

Regression Test Optimization Criteria



• The algorithm reduces the test suite data by approximately 50%
– [Rai, 2014]

• The techniques are 40-50% more effective in uncovering the first 
failure of the changed program
– [Jiang, 2009]

• Average reduction in test suite size of 94% while achieving 
requirements-based coverage
– implemented in:

• a continuous integration env’t with 30 seconds run time

• implemented at Cisco, Norway

– [Gotlieb, 2016]

Regression Test Optimization Results



Automated
Test Input Generation



Automated Test Input Generation
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Automated Test Input Generation
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Example Tools
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• Empirical studies have shown:
– tool support can lead to improvements in code coverage of up to 300%
– that there is no measurable improvement in the number of bugs actually found by 

developer/testers – even though more branches are covered

• A set of automatically-generated regression tests 
providing full coverage is an excellent starting point 
when you change or refactor the code

• Danger!!!
– testers rely on the tool → little or no black box testing
– testers use the tool to meet safety-related test standards

Automated Test Input Generation -
Summary



Automated
Stress Testing



• Generate pseudo-random streams of user events such as 
clicks, touches, or gestures, as well as a number of 
system-level events
– they pretend they are a ‘stupid’ tester

• Aim to cause an ANR (‘Application Not Responding’) or 
for the app to simply crash
– so test result is easy to observe

• Require little tester input
– except to check-out the reported failures

Automated Stress Testing Tools



• Google Monkey
– built into the Android development platform - free
– fuzz testing tool – random inputs

• Sapienz
– open source
– search-based testing tool
– when applied to the top 1,000 Google Play apps, Sapienz found 558 unique, previously-

unknown faults

• Dynodroid
– open source
– allows interleaving of human and tool
– when applied to the top 1,000 Google Play apps, Dynodroid found 6 unique, previously 

unknown faults

Example - Android Stress Testing Tools
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Test Coverage



Fault Revealing Steps



• Testing must get more efficient
• we can’t justify spending 40% of the IT budget

• there aren’t enough professional testers to spend this on

• We have to think ‘outside of the (black and white) box’

• We need to supplement traditional approaches…

Conclusions

Testing WITHOUT Test Design



Thank you for listening ☺

Any Questions?


