
Stuart Reid
STA Consulting Inc.

(www.stureid.info / stureid.test@gmail.com)

Software Testing
without Test Design

©Stuart Reid, 2017

http://www.stureid.info/

Testing as a Percentage of IT Budget

0

10

20

30

40

50 Too much testing!!!!

Is it good
enough
testing?

2012 2013 2014 2015

%

2016 2017 World Quality Report 2015-162018

Automation is only a partial answer

L

E

G Test
Automation

45%

Manual Testing

55%

World Quality
Report 2015-16

• Tests generated by the end users
– crowd testing and A/B testing

• Tests generated using random test
generation
– pure random and fuzz testing

• Tests generated by artificial intelligence
– regression tests and stress tests

Testing WITHOUT Test Design

Users as Testers -
Crowd Testing &

A/B Testing

• Their personas are perfect ☺
– we don’t have to guess their habits or preferences

• Their test environments are truly representative ☺

• Can we trust them?
– use Non-Disclosure Agreements (NDAs)

– don’t tell them!

What about the users as testers?

Mobile

Android Handset Fragmentation

Crowd Testing for Multiple Devices/Env’ts

Crowd Testers
(using their own diverse

devices in different
environments)

App with
Testing
Needs

App with
Testing

Instructions

Test
Results

Test
Report

Crowd
Testing
Service

$

$$$$$ $$$$

Client
with
App

A/B Testing

HIGHER PRODUCTIVITY?
MORE SALES?
HAPPIER USERS?

ORIGINAL
BENCHMARK

A

B

Random Testing &
Fuzz Testing

Experimental Evidence–
Random vs Systematic Test Design

EP

BVA

Statement

Branch

Branch Condition

MCDC

Branch Condition
Combination

0.16

0.20

0.12

0.15

0.14

0.16

0.16

mean probability of
detection for same number

of
random test cases

0.16

0.14

0.15

0.14

0.16

0.17

mean probability of
detection for each

technique

0.75

• Airliner
– 3 GB/hour

• CCTV
– 1 TB/month

• Mobile Phone Operator
– 3 TB/day

• Globally
– 2.5 Million TB/day

Big Data - Example Data Volumes

Data Validity from Internet of Things

Data
Collector

Interface
Standard

Big Data

Raw
Sensor
Data

Analytics

Keep me safe!!

Stop insecure data

We’re drowning!!

There’s too much data

Fuzz Testing

Input Data
Generation

Valid
Data

Mutated
Invalid
Data

Interface
Standard

Data
Collector

✓
Assertion
Checking

Validity
Checking

✓

Random-
based

Expert
input

Testing with
Artificial Intelligence

Artificial Intelligence in the Cinema

I’m sorry Dave…
Doomsday Book

Artificial Intelligence (AI) Works!

• Neural Networks
• Expert/Knowledge-based Systems
• Machine Learning
• Fuzzy and Probabilistic Logic
• Classification
• Search and Optimization

• Much of today’s effective AI uses a variety of overlapping
techniques
– and exploits the availability of processing power & storage

Artificial Intelligence Techniques

AI Toolkits

Google
TensorFlow

Microsoft
CNTK

Theano

IBM
Watson

Torch

Caffe

AI
Toolkits

AI - Smart Testing Opportunities

Bug Prediction

Static Analysis Test Input
Generation

Specification
Testing

Specification-
based Script
Generation

Regression
Testing Stress Testing

Automated
Exploratory

Testing
Usage Profiling

Interactive
Dashboard

Smart Test
Manager

Crowd TestingTest Strategy
Assistant

Defect
Management

Static Analysis

• Open source

• Analyses C, Objective-C and Java
– on Android and iOS

• Fast – can do millions of LOC in a few minutes
– ideal for continuous integration

• Facebook claims that approximately 80% of raised
issues are fixed (so are true faults)

• Also used by Instagram, Uber, Spotify, etc.

Static Analysis - Facebook Infer

Regression Testing

Regression Test Optimization

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Branch Y

Branch X

Branch W

Branch R

Branch P

Branch Q

Regression Test Optimization

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Risk A

Risk D Risk C

Risk B

Regression Test Optimization

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Defect-R-0

Defect-R-3

Defect-R-1

Regression Test Selection

TC1

TC2

TC5

TC4

TC3

TC6

TC7

Defect-R-0

Defect-R-3

Defect-R-1

Branch Y

Branch X

Branch W

Branch R

Branch P

Branch QRisk A

Risk D

Risk C

Risk B

Regression Test Prioritization

TC1

TC2
TC4

TC3

TC7

• Tests that found defects previously

• Tests that reduce execution time

• Reduce the number of tests needed

• Tests that achieve full coverage

• Test that exercise recently changed code

• Tests that address high risks

• etc.

Regression Test Optimization Criteria

• The algorithm reduces the test suite data by approximately 50%
– [Rai, 2014]

• The techniques are 40-50% more effective in uncovering the first
failure of the changed program
– [Jiang, 2009]

• Average reduction in test suite size of 94% while achieving
requirements-based coverage
– implemented in:

• a continuous integration env’t with 30 seconds run time

• implemented at Cisco, Norway

– [Gotlieb, 2016]

Regression Test Optimization Results

Automated
Test Input Generation

Automated Test Input Generation

Test Harness

SUT
Actual

Outputs
Test

Inputs

Automated Test Input Generation

Test
Inputs

New
Actual
Outputs

Changed
SUT

Regression
Test

Results

Expected
Outputs

U
PD

A
T
E

SUT
Actual

Outputs
Test

Inputs

Example Tools

C#

Java

CAUSTIN

Intellitest

EvoSuite

• Empirical studies have shown:
– tool support can lead to improvements in code coverage of up to 300%
– that there is no measurable improvement in the number of bugs actually found by

developer/testers – even though more branches are covered

• A set of automatically-generated regression tests
providing full coverage is an excellent starting point
when you change or refactor the code

• Danger!!!
– testers rely on the tool → little or no black box testing
– testers use the tool to meet safety-related test standards

Automated Test Input Generation -
Summary

Automated
Stress Testing

• Generate pseudo-random streams of user events such as
clicks, touches, or gestures, as well as a number of
system-level events
– they pretend they are a ‘stupid’ tester

• Aim to cause an ANR (‘Application Not Responding’) or
for the app to simply crash
– so test result is easy to observe

• Require little tester input
– except to check-out the reported failures

Automated Stress Testing Tools

• Google Monkey
– built into the Android development platform - free
– fuzz testing tool – random inputs

• Sapienz
– open source
– search-based testing tool
– when applied to the top 1,000 Google Play apps, Sapienz found 558 unique, previously-

unknown faults

• Dynodroid
– open source
– allows interleaving of human and tool
– when applied to the top 1,000 Google Play apps, Dynodroid found 6 unique, previously

unknown faults

Example - Android Stress Testing Tools

Defect Detection Effectiveness

0

100

200

1 2 3

Chart Title

Test Coverage

Fault Revealing Steps

• Testing must get more efficient
• we can’t justify spending 40% of the IT budget

• there aren’t enough professional testers to spend this on

• We have to think ‘outside of the (black and white) box’

• We need to supplement traditional approaches…

Conclusions

Testing WITHOUT Test Design

Thank you for listening ☺

Any Questions?

